From Graphicsto
Computation

/ff‘

David B. Kirk, NVIDIA Fellow
A NVIDIA

<2

GPUs Tod ay NVIDIA
Lessons from Graphics Pipeline
Throughput is paramount

Create, run, & retire lots of threads very rapidly

Use multithreading to hide latency
: 7 6

125M xtors

RIVA128 23Mxtors
3M xtors

© NVIDIA Corporation 2010

Early Electronic Graphics Hardware

© NVIDIA Corporation 2010

R, :
SKETCHPAD: A Man-Machine Graphical Communication System
Ivan Sutherland, 1963

<2

nviDiA

=

nviDiA

=

nviDiA

Modern GPUs: Unified “Virtual Pipeline”

The Graphics Pipeline

Discrete Design Unified Design

Key abstraction of real-time graphics l

|

et
Hardware used to look like this

l Shader

m

Vertex shaders, pixel shaders, etc. become threads running different
programs on a flexible core

One chip/board per stage
L8

4

© NVIDIA Corporation 2010

Fixed data flow through pipeline

Performance Development

Fermi: The Computational GPU

* 7x Double Precision of CPUs A
. . 100FFlops
u * |[EEE 754-2008 SP & DP Floating Point

1 PRops

4/l Wvda

¢ Increased Shared Memory from 16 KB to 64 KB
~—————————— ¢ Added L1 and L2 Caches

m e ECC on all Internal and External Memories
* Enable up to 1 TeraByte of GPU Memories

 High Speed GDDR5 Memaory Interface

100 TRops

4/ Wvda

10 TFRlops

1 TFRlops %

Performance

4/l Wwvdd

100 GFlops 3£

10 GFlops

4/l Wwvdd

* Multiple Simultaneous Tasks on GPU

o * 10x Faster Atomic Operations 1 GFlops
(Usability. . .. Support 100 MFiops
e System Calls, printf support

© NVIDIA Corporation 2010 11 http://www .top500.0rg/

Dawning Nebulae

Max Planck
Institute

=

nvipia

National Center for

Tokyo Institute
Supercomputing Applications

of Technology

Second Fastest Supercomputer in the World

1.27 Petaflop

4640 Tesla GPUs

A1NNN- P11 Coh ictare Arma el e \WWearAd

A
) - T, i i T - T P = —
b 0L i " * Norwegian J s\ St.UP_elers_l:urgf' o i, nNVIDIA
e gy G T* * niversity ¥ . .
f 4 »
c UvoLE Nizhegorodsky F S

R L Copenhagen University 2 i

3 s Aarhus
ST *WestGrid i o Daresbury Lab’

ronlnge Max Planck Kazan Umv
6 GPU WISCONSIf) o0 OXfOfd Institute, - lnstltute of &
'y Utah Fermi- Argonne Cambndge

BraunschWE|93 Physics ¢
\ Lab* Laph OSC " Maryland e = » 1
R NCSA Johns Hopkins

4 e ~ University
. . Sl Chinese At:ademy + dsinghua
”‘Msszt GPUS Hervard “ ; e e University
A TAC Jefferson Labs . g e * i

1anfoLd Georgia Tech = 3 . 2000+ GPUs W
4 Delaware Oak Ridge UNC™. R 5 ; Indlan Inst ;Delm Scieqce & Tech

L AE of Tropical 3 niTicali out,
Meteorolog 1

e Programming GPUs
n Instltuté \ National

Dept of& ofISC|enc;§ ' ; Taiwan Univ

Space ., Madras

Univ

Curtin

b . University
Existing Depl t .
* xisting Deploymen: i

* Prospective Deployment Swinburne =
University

C for CUDA : C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)
{
for (int i = 0; i < n; ++i)
yl[il = a*x[i] + y[il:
3
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Standard C Code

\

nt i = blockldx.x*blockDim.x + threadldx.x;

if (i <n) yl[i] = a*x[il + y[il;
3
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
\saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, Yy);

[_global_ void saxpy_parallel(int n, float a, float *x, float *y) \
{

Parallel C Code

J

Targeting Multiple Platforms with CUDA

NVCC

NVIDIA CUDA Toolkit

\ Ocelot
PTX to Multi-core

‘ MCUDA
CUDA to Multi-core

SWAN

>

nvinDia

Multi-Core
CPUs

CUDA to OpenCL

MCUDA: http://impact.crhc.illinois.edu/mcuda.php
Ocelot: http://code.google.com/p/gpuocelot/
Swan: http://www.multiscalelab.org/swan

Other GPUs

CUDA Programming Effort / Performance

These things are REALLY fast

B Performance (gflops) Development Time (hours)

Matlab

Source : MIT CUDA Course

CUDA

BY EXAMPLE

Programming Massively
Farallsl Processors

Open(LAM

Explosive Growth in CUDA Developers

200,000 CUDA Developer Downloads

Cumulative Toolkit Downleads by Version

QA

LINIVERSITIES

Teaching Parallel Programming using NVIDIA GPUs

10000 — (6™ Ba om [e AL | N1LL s

“Power Wall + Memory Wall + ILP Wall = Brick Wall”

1000 The Landscape of Parallel Computing Research:
A View from Berkeley

David Patterson et all.

100

Performance (vs. VAX-

Source: Hennessy & Patterson, CAAQA, 4th Edition

1 2 1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

GPU Computing <A

nvibDiA

CPU + GPU Co-Processing

GPU
515 GigaFlops (DP)

48 GigaFlops (DP)

NVIDIA CUDA Parallel Computing Architecture <2

nvipia

Many processors — eventually thousands
Latency tolerant - execute 1000’s of threads
General load/store

On-chip shared-memory

CUDA programs scales across any size GPU

e O e Y e i e e L i i e s A Shared
Do) (o (o (o) (7o) ([] of oo Jouf o Jow [) |(Memo

Why ray tracing?

Ray tracing unifies rendering of visual phenomena
fewer algorithms with fewer interactions between algorithms

Easier to combine advanced visual effects robustly
soft shadows
subsurface scattering
indirect illumination
transparency
reflective & glossy surfaces

Rasterization & Ray Tracing

Rasterization

For each triangle
Find the pixels it covers

For each pixel: compare
to closest triangle so far

Mapped to massively
parallel GPU through
DirectX or OpenGL

=

nvibDiA

Ray tracing regimes

Whitted 1980

Cook 1984

=

nvipia

Classical Ray Tracing

For each pixel

Find the triangles that
might be closest

For each triangle:
compute distance to
pixel

Mapped to massively
parallel GPU through
NVIDIA OptiX

>

nvipia

Kajiyal986

© .G’w -
¢

*Mirror reflections
*Perfect refractions

*Depth of field
*Motion blur

e|ndirect illumination
*Caustics

depth of field

But: resource intensive, challenging to make fast

Hard shadows

*Soft shadows

*Physical accuracy

*Glossy reflections

+2-20 rays per pixel

+20-200 rays per pixel +200-10° rays per pixel

OptiX Examples

Interactive

Stochastic Rasterization

Rasterize convex hull of time-continuous triangle

Ray trace against TCT at each pixel

OptiX Examples

Interactive Progressive

>

nvinDia

>

nvinia

Ambient Occlusion

Darken pixels by % of hemisphere blocked by nearby triangles

to find affected pixels

L) Jrrrr— ‘

10x Zoom

>

nvibDiA

Workloads

* Each GPU is designed to target a mix of known and speculative
workloads

* The art of GPU design is choosing these workloads

What workloads will drive future GPUs?
* High performance computing

¢ Graphics

* BIG Science

>

nvibDiA

Separable Filters

Depth of field, film bloom

Histogram

* Distribution of colors in an image
* Image analysis for High Dynamic Range tone mapping

Separable Filters

Subsurface scattering
via texture space
diffusion

>

nvipia

More Post-Processing Effects f,% CUDA Tessellation f,%n

Flexible adaptive geometry generation
Recursive subdivision

Real-Time View-Dependent Rendering of Parametric Surfaceg
Eisenacher, Meyer, Loop 2004
© Per Lonroth, Mattias Unger, DICE

© NVIDIA Corporation 2010

: : |
The Next Big Thing — Simulation ' - Real-time fluid effects AViDIA

Synthesize Amazing Worlds : Complex fluid-drive motion is all around

Car exhaust, dust storms, rolling mist, steam, smoke, fire, contrails,
bubbles in water, ...

Goal: Add this level of realism to games

Problem: Turbulent motion is computationally intensivel

<A W APEX Turbulence o

Solution: GPUs are computational monsters! BAme

Calculate near-field fluid on grid
Fluid velocities drive particle ® motions Interactive CFD Solution + Volume Rendering

1. Calculate Fluid Velocities on Regular Grid
2nd-QOrder Accurate CUDA Multigrid Solver

2. Interpolate Fluid Velocities ’onto Particles
3D Interpolation in CUDA

3. Advance Particles
CUDA Particle System

4. Render Particles
CUDA - OpenGL Interop

<A Increasing Number of CUDA Applications <A

nvibDiA nvipia

_ 2010
Already Available 04

PGl Accelerator -
Enhancements

CULA ++,
Libraries rust: C++ 3 e CAPS HMPP Mathworks
Enhancements MATLAB
q eismic Analysis: eismic Analysis: Seismic Reservoir Reservoir
Oill& Gas m Interpretation Simulation 1 Simulation 2

Bio- | BB Quantum Chem Other Popular Quantum
Chemistry Code 1 MD code Chem Code 2

. o . |
M k S B I: Bio- DA- . . Short-read seq
aking Science Better, not just Faster womsr: (D DR -
1
Video & Fraunhofer tiX Ray Tracing mental ra Main Concept Elemental 3D CAD SW
Rendering M JBEGRK) gd Videolive | withira
. ~ NumeriX: cicom| . . Credit Risk Trading Platform
Finance “ _ Risk Analysis 1 Risk Analysis 2 ‘ Analysis ISV ISV
CAE utoDes| enCurren cusim AcuSolve Structural MSC d MsC Several
 Vadlow crblpOE vy * Mechanics 5V 1 MARC Nasran ChE 515
Electro-magnetics: ilent ADS ; . Lithography SPICE
EDA agient,CST Reméam, SPEAG i Smultor ‘ Verlog simutor “prodits” | smuiatr

Released) Announced ~ Unannounced
S erocuct Product

< W An Exciting Revolution - Sodium Map of the Bralﬁ,

IDIA

Medical Imaging Molecular Dynamics Video Transcoding Matlab Computing Astrophysics
U of Utah U of lllinois, Urbana Elemental Tech AccelerEyes RIKEN

50x — 150x

Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of Illinois at Chicago

Images of sodium in the brain
Sodium is one of the most regulated substance in human tissues
Any significant shift in sodium concentration signals cell death
Much less abundant than water in human tissues, about 1/2000
Very large number of samples are needed for good SNR

S—— : ! ; : * Requires high-quality reconstruction, currently considered impractical
Financial simulation Linear Algebra 3D Ultrasound Quantum Chemistry Gene Sequencing
Oxford Universidad Jaime Techniscan U of lllinois, Urbana U of Maryland

Thanks: Wen-mei Hwu

An Exciting Revolution - Sodium I\/Iap of the Braliﬁ,mm Reconstructing MR Images <3

nvipia

&3 Spiral Scan Data
= Ky
- Gridding®

Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago

Enables study of brain-cell viability before anatomic changes
occur in stroke and cancer treatment.

Drastic improvement of timeliness of treatment decision

Minutes for stroke and days for oncology.

Fast scan, fast reconstruction, good i |mages
Can become realtime with about 10X speedup.

!Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int| Symp. on Biomedical Imaging, 2004

] e f%a Summary of Spiral Scan LS Results rﬁg

5
Spiral Scan Data Q Fd

Reconstruction Run Time (m) Run Time (m) Linear Solver Recon. Time (m)

ky (m)

/ Gridding + FFT N/A N/A N/A 0.39
(CPU, DP)
LS (CPU, DP) 0.3 . !

LS (CPU, SP) C2678.7 05 . .
ﬂ / s LS (G80, Naive) 5.1 . . <‘
19

LS (G80, CMem) 186
FFT LS (G80, CMem, 98.2 . 4.00
Spiral scan data + LS SFU)

Superior images at expense of significantly more computation; several hundred LS (G80, CMem, 75D 1789 - : e |

times slower than gridding. i 357X, in machine set 228X

Traditionally considered impractical! up time.

In-silico Drug Screening protein aggregat,c%

Com puti ng = Futu ristic :) / * Weed out inactive compounds a process critical in

Biology \ Y A - ¥ * Rank “drug candidates” for given » some degenerative diseases (e.g.,

High-Throughput

targets

Example:
* CERN grid — 300,000 potential
drugs against avian flu screened
. i R , ® 2 PULErS, 4 Weeks time scale of the process:
« in-silico screening of drugs 3 4 : * 4years cpu-time

» mastering diseases

Parkinson’s): aggregates abnormal

» drug production: aggregates
undesirable

» in vitro: up to days!

» impossible for molecular dynamics

Thanks: Lorena Barba

Electrostatic Interactions Play a Crucial Role

Classical molecular dynamics:
* very detailed ... but too expensive at large
scale!
Alternative: continuum model of
surrounding water
* don’t care what the H20 molecules do
model as a continuum dielectric
* leads to a boundary integral equation (BIE)
problem
Fast algorithm, well-suited for GPU:
fast multipole method, solves BIE in O(N) ops

Vision—predictive biology, faster, cheaper,
accurate

Drug screening:
Few weeks, on a (say) 32-node GPU cluster >> safe drug to market

Protein aggregation:
Get physics right + 100x larger simulation >>understand Parkinson’s

Analogy:

circuit design : itis all done digitally and verified; the circuit works!
if it didn’'t work, it would be too costly for many consumer electronics

>

nviDIA

>

nviDia

As in Many Computation-hungry Applications

Three-step approach:
1. Restructure the mathematical formulation

2. Innovate at the algorithm level
3. Tune core software for hardware architecture

Conclusion: Three Options N>}
“Accelerate” Legacy Algorithms and Applications

Use libraries, recode existing apps
=> good work for domain scientists (minimal CS required)

Rewrite / Create new Approaches

Opportunity for clever algorithmic thinking
=>good work for computer scientists (minimal domain knowledge

required)

Potential for biggest performance advantage

>

nvibDiA

Key GPU Workloads

Computational graphics (don’t forget DirectXn)

Scientific and numeric computing

Image processing — video & images

Computer vision / Computational Photography

* Speech & natural language

Data mining & machine learning

>

nvipia

Final Thoughts — Education

We should teach parallel computing in CS 1 or CS 2
Computers don’t get faster, just wider

Manycore is the fus«wie of computing... and graphics

¥_—_W—J

Which goes faster on large data?

Students need to understand this!

